
2D Lists

Code Tracing

import copy
def f(a):
 return 10*a[0][0]+a[1][0]

def ct2(a):
 b = copy.copy(a)
 c = copy.deepcopy(a)
 d = a
 e = a[0:len(a)]
 c[0][0] = 1
 d[0] = [2]
 e[1] = [3]
 b[0][0] = 4
 print(f(b), f(c), f(d), f(e)) # f is defined above

a = [[5], [6]]
ct2(a)
print(f(a)) # don't miss this

Reasoning Over Code

def rc1(n):
assert(isinstance(n, int) and
 (n >= 0) and (n < 1234))
x = y = 0
for i in range(2, 1234):

 if ((i % (i//2) > 0) and
 ((i//10) == (i%10))):

(x, y) = (y, i)
return (x == n)

def rc2(M):
assert(isinstance(M, list))
(i, n) = (3, 1)

 for val in M:
if (int(str(i)*n) != val): return False
i -= 1
if (i == 0): (i, n) = (3, n+1)

return (len(M) == 7)

Big-O Conceptual Questions
Answer the following questions without look at any notes or the course website!!

State the Big-O of each of the following functions:

Function Big-O

L.count(val) O(N)

len(L) O(1)

L.append(item) O(1)

L.insert(0, item) O(N)

max(L) O(N)

min(L) O(N)

sum(L) O(N)

val in L O(N)

List the ​worst-case scenario ​big-Os of selectionSort, bubbleSort, and mergeSort. Which is the
fastest? Why?

List the ​best-case scenario ​big-Os of selectionSort, bubbleSort, and mergeSort. Which is the
fastest? Why? Is this the same answer as the questions above?

Big-O Practice Questions

Function Big-O

def bigOh1(L):
assume L is a 1d list
N = len(L)
 for val in copy.copy(L):

L += [val**2]
i = N
while (i > 0):

L[i] += i
i //= 4

return (sum(L) / len(L))

def bigOh2(L):
 # assume L is a pre-sorted 1d list
 # (don’t count the cost of sorting L in

your answer) assume binarySearch
 # is written as usual
 def f(L): # NlogN
 N = len(L)

M = []
for val in L: # N

M.append(binarySearch(L, val)) #log
return M

 return f(f(f(L))) # note the nested calls

def bigOh3(x):
 N = math.log(x, 2)
 c = 1
 while (x > 0): (x, c) = (x//42, c+1) #log x = N
 x = 1
 while (x**2 < c): x += 1 #sqrt(log x)

return x

wordSearchWithPortals
You may assume that wordSearch and wordSearchFromCell are already written for you.

Given a rectangular board, return true if the word can be formed and false if the word cannot be
formed. This will work like word search but with an addition. Instead of a board of all letters
there can be tuples containing positions. The moment you see a tuple you should check that
position of the board to see if the next letter matches and continue searching for the rest of the
word from there. For example

board = [['d', ‘k’, 'g'],
 [(0,2), 'a', 'c'],

 ['o', 'a', 't'],
['u', 'r', 'k'],

]

