2D Lists
Code Tracing

import copy
def f(a):
return 10*a[0][0]+a[1][0]

= copy.copy(a)

c = copy.deepcopy(a)
= a

e = a[0:len(a)]

c[0][0] = 1

dio] = [2]

e(1 = [3]

b[0][0] = 4

print(f(b), f(c), f(d), f(e)) #fis defined above

a = [[3], [6]]
ct2(a)
print(f(a)) # don't miss this

Reasoning Over Code

def rc1(n):
assert(isinstance(n, int) and
(n>=0)and (n <1234))
x=y=0
foriin range(2, 1234):
if ((i % (i//2) > 0) and
((i/110) == (1%10))):
(x,y)=(y, i)
return (x ==n)

def rc2(M):
assert(isinstance(M, list))
(i,n)=(3,1)
for val in M:

if (int(str(i)*n) != val): return False

i-=1
if (i ==0): (i, n) = (3, n+1)
return (len(M) == 7)

Big-O Conceptual Questions
Answer the following questions without look at any notes or the course website!!

State the Big-O of each of the following functions:

Function Big-O
L.count(val) O(N)
len(L) o(1)
L.append(item) o(1)
L.insert(0, item) O(N)
max(L) O(N)
min(L) O(N)
sum(L) O(N)
val in L O(N)

List the worst-case scenario big-Os of selectionSort, bubbleSort, and mergeSort. Which is the
fastest? Why?

List the best-case scenario big-Os of selectionSort, bubbleSort, and mergeSort. Which is the
fastest? Why? Is this the same answer as the questions above?

Big-O Practice Questions

Function

Big-O

def bigOh1(L):
assume L is a 1d list
N =len(L)
for val in copy.copy(L):
L +=[val**2]
i=N
while (i > 0):
L[] +=i
ill=4
return (sum(L) /len(L))

def bigOh2(L):
assume L is a pre-sorted 1d list
(don’t count the cost of sorting L in
your answer) assume binarySearch
is written as usual
def f(L): # NlogN
N =len(L)
M=[]
forvalinL: #N
M.append(binarySearch(L, val)) #log
return M
return f(f(f(L))) # note the nested calls

def bigOh3(x):
N = math.log(x, 2)
c=1
while (x > 0): (x, ¢) = (x//42, c+1) #logx =N
x=1
while (x**2 <c): x +=1 #sqrt(log x)
return X

wordSearchWithPortals
You may assume that wordSearch and wordSearchFromCell are already written for you.

Given a rectangular board, return true if the word can be formed and false if the word cannot be
formed. This will work like word search but with an addition. Instead of a board of all letters
there can be tuples containing positions. The moment you see a tuple you should check that
position of the board to see if the next letter matches and continue searching for the rest of the
word from there. For example

board = [['d', ‘k’', 'g' 1,
[(0,2), 'a', 'c' I,

